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Forward genetic studies use meiotic mapping to adduce evidence
that a particular mutation, normally induced by a germline muta-
gen, is causative of a particular phenotype. Particularly in small
pedigrees, cosegregation of multiple mutations, occasional un-
awareness of mutations, and paucity of homozygotes may lead to
erroneous declarations of cause and effect. We sought to improve
the identification of mutations causing immune phenotypes in mice
by creating Candidate Explorer (CE), a machine-learning software
program that integrates 67 features of genetic mapping data into
a single numeric score, mathematically convertible to the probability
of verification of any putative mutation–phenotype association. At
this time, CE has evaluated putative mutation–phenotype associa-
tions arising from screening damagingmutations in ∼55% ofmouse
genes for effects on flow cytometry measurements of immune cells
in the blood. CE has therefore identified more than half of genes
within which mutations can be causative of flow cytometric pheno-
variation in Mus musculus. The majority of these genes were not
previously known to support immune function or homeostasis.
Mouse geneticists will find CE data informative in identifying caus-
ative mutations within quantitative trait loci, while clinical geneti-
cists may use CE to help connect causative variants with rare
heritable diseases of immunity, even in the absence of linkage in-
formation. CE displays integrated mutation, phenotype, and linkage
data, and is freely available for query online.

ENU mutagenesis | automated meiotic mapping | machine learning |
flow cytometry | immune cells

Forward genetics begins with a phenotype, often induced by a
random germline mutagen, and ends with the discovery of a

causative mutation. We developed a process for rapid identifica-
tion of causative mutations in mice carrying N-ethyl-N-nitrosourea
(ENU)-induced germline mutations (1, 2). Our pipeline involves
mutagenizing male C57BL/6J (G0) mice and breeding them on
the C57BL/6J background to create G1 male pedigree founders,
G2 daughters, and G3 mice of both sexes (SI Appendix, Fig. S1).
We sequenced the exomes of all G1 founders of pedigrees,
achieving >99% 10X coverage over the targeted exome. Identified
variants (with respect to the C57BL/6J reference genome) are
genotyped in G2 and G3 mice in advance of phenotypic screening.
Using a variety of phenotypic screens, G3 mice are then tested for
phenovariance with respect to C57BL/6J mice or a control pop-
ulation of G3 mice. Demonstrating linkage between a mutant

phenotype detected in screening and a particular mutation is ac-
complished by automated meiotic mapping (AMM) performed by
the Linkage Analyzer software, which tests the null hypothesis for
every mutation in the pedigree (i.e., “mutation A is unrelated to
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uate ∼87,000 mutation/phenotype associations identified by
flow cytometry screening of circulating immune cells from
mutagenized mice: 1,279 genes representing 2,336 muta-
tions were rated good or excellent candidates for causation of
phenotypes. Many of these genes were not previously impli-
cated in immunity.
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phenotypic performance in screen α”) (1). In contrast, a mutation
associated with the mutant phenotype at a frequency greater than
predicted by chance alone is likely to confer the phenotype. Re-
jection of the null hypothesis with a P ≤ 0.05, with Bonferroni
correction for multiple comparisons, has generally been consid-
ered suggestive of causation. Verification by an independently
generated allele is necessary to confirm the association.
Experience with many thousands of mutation–phenotype as-

sociations identified by AMM and either verified or excluded by
testing CRISPR/Cas9-targeted alleles, has shown that the P
value determined by AMM is not the sole indicator of causation.
That is, a mutation linked to a phenotype with a P < 0.05 is
sometimes not the causative mutation. Many other factors, such
as the nature of the mutation (benign, damaging, null), the es-
sentiality of the gene for survival prior to weaning, pedigree size,
the number of homozygotes tested, the magnitude of phenotypic
effect, data variance characteristics of the screen in question, the
number of distinct phenotypes caused by the mutation, the pres-
ence or absence of cosegregating mutations, and the observation
of other alleles with similar effects, influence correct selection of
an authentic causative mutation. These numerous considerations,
not readily integrated into a decision by human observers, im-
pelled us to develop Candidate Explorer (CE), a software tool
employing a supervised machine-learning algorithm to estimate
the likelihood of verification of any putative mutation–phenotype
association implicated by AMM.
In this study, we focused on changes in immune cell populations,

specifically B cells, T cells, conventional and plasmacytoid dendritic
cells (DC), macrophages, neutrophils, natural killer (NK) cells, and
NK1.1+ T cells. Cell populations and subpopulations were detected
and measured by flow cytometric analysis of peripheral blood leu-
kocytes from G3 mutant mice carrying ENU-induced mutations.
We present CE assessments of 87,795 mutation–phenotype asso-
ciations (P < 0.05). CE has identified more than 1,270 genes with a
high and defined probability of verifiable importance in leukocyte
development or maintenance. Many of these genes were not pre-
viously known to be important in immune function.

Results
CE Overview. The purpose of CE is to aid the researcher in pre-
dicting whether a mutation associated with a phenotype by
AMM is a truly causative mutation. CE evaluates mutation–
phenotype associations that pass specific basal filters for con-
ventionally good candidates. In this paper, we use as the default
filters P < 0.05 (Bonferroni corrected), ≥10 mice in the tested
pedigree, and ≥2 homozygous reference mice screened; how-
ever, more stringent criteria can be set by the user. The core of
CE is a supervised machine-learning algorithm that outputs a
numerical score (CE score), a categorical assessment (candidate
status), and verification probability for each mutation–phenotype
association based on input phenotype data (from screening),
mutation data, gene data, and meiotic mapping data (Fig. 1A).
CE is trained based on phenotypic assessment of mice carrying
targeted null or replacement alleles of candidate genes (see
below). In predicting, performed four times per day because of
the dynamic status of the database, CE uses all defined fea-
tures of the original pedigree screening data to estimate the
probability of candidate verification. CE is publicly available
for querying mutation–phenotype associations identified in
flow cytometry screens, as well as radiographic screens of bone
(DEXA scanning). An example of the use of CE is presented
in Movie S1. In this paper, we present the results of flow cytometry
screening.

CE Training.At present, the CE training set contains 1,903 verified
and 3,013 excluded mutation–phenotype associations (4,916 as-
sessments in all), based on germline retargeting of 514 genes.
Germline retargeting was performed using CRISPR/Cas9 to

generate knockout alleles of the candidate genes in mice on a
pure reference background (C57BL/6J or C57BL/6N). Alterna-
tively, when evidence for homozygous lethality of null alleles
existed (see Essentiality score, below) or the ENU mutation was
suspected to cause hypermorphic, neomorphic, or antimorphic
effects, the original ENU allele was recreated by CRISPR/Cas9
targeting (designated “replacement” allele). Mice carrying tar-
geted germline knockout or replacement alleles were expanded
to form pedigrees containing mice homozygous for the reference
allele (REF), heterozygous (HET), and homozygous for the
variant allele (VAR). Compound heterozygous mice with two or
more variant alleles of a gene were sometimes also generated.
Fresh pedigrees of mice carrying the CRISPR-targeted alleles
were subjected to the phenotypic screens in which the original
ENU mutations scored as hits. CRISPR-targeted mutations were
considered verified according to the criteria:

1. Observation of the same phenotype with the same direction-
ality of change as observed for the original ENU allele with a
P value better than 0.01, or

2. Observation of the same phenotype with the opposite direc-
tionality of change as observed for the original ENU allele
with a P value better than 0.001, or

3. De novo observation of a phenotype (not seen in the original
screen) with a P value better than 0.001.

CE Output and Performance.
CE score and candidate status. The CE Score (range 0 to 1) is a class
probability related by a polynomial function to the actual prob-
ability of verification by CRISPR-targeted alleles, as determined
by regression analysis (Fig. 1B). In conjunction with the algo-
rithmic score, it is used by CE to designate one of four possible
candidate statuses for each mutation–phenotype association
(excellent, good, potential, or not good) as follows:

1. Excellent candidate: CE score ≥ 0.39 and algorithmic score
≥ −0.5,

2. Good candidate: CE score ≥ 0.39 and −4.5 ≤ algorithmic
score < −0.5,

3. Potential candidate: CE score ≥ 0.39 and algorithmic score
< −4.5 OR CE score < 0.39 and algorithmic score ≥ −0.5

4. Not good candidate: CE score < 0.39 and algorithmic score
score < −0.5.

We generally choose good or excellent candidates for CRISPR/
Cas9 targeting and further study. However, CE scores are not
strictly proportional to the probability of verification (Fig. 1B), and
some “good” or “excellent” candidates fail to verify. Conversely,
“potential” and “not good” candidates will sometimes verify as
true positive associations. We take it as a truism that authentic can-
didates will achieve strong CE scores as more alleles are obtained and
tested (approaching saturation) and will therefore eventually
be verified.
Performance. The performance of the CE prediction model
established using the training set was assessed using the repeated
10-fold cross-validation method. The receiver operating charac-
teristic (ROC) curve has an area under the curve (AUC) of 0.943
(Fig. 1C and SI Appendix, Fig. S2); the current cutoff is 0.39,
corresponding to the point with the minimum distance to the
upper left corner of the ROC curve. CE ranking of good or
better corresponds to ∼80% precision (correctly calling a veri-
fied candidate “true;” i.e., a 20% false-discovery rate) and 87%
recall (true positive rate) (Table 1).
CE is also often capable of correctly identifying which muta-

tion is causative when two or more mutations cosegregate (see
also below, Driven By status). Among 961 such cases, CE cor-
rectly identified on average 76.5% of causative mutations as the
top CE scorer, with generally better performance when fewer
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mutations cosegregated (Table 2). As further training is per-
formed, and as the total volume of screening data increases (with
an attendant increase in the number of genes with allelism and
the overall density of allelic series), CE performance will con-
tinue to improve.
Verification probability. Multiple alleles of a given gene may be
subjected to a given phenotypic screen, resulting in several
mutation–phenotype associations for the same gene and phe-
notype. Each mutation–phenotype association is independently
accorded an allele verification probability (AVP) estimate for
the mutation in question, extrapolated from the polynomial re-
gression analysis of CE score and the average percentage of
verified mutation–phenotype associations (Fig. 1B). In addition,

the composite estimate that one or more mutations within a
certain gene will be verified as the source of a certain phenotype
(gene verification probability, GVP) is given by:

GVP = 1 − 1 −AVP1( ) 1 −AVP2( ) 1 −AVP3( ) . . . 1 −AVPN( ).

AVPs of alleles causing the same direction of phenotypic change
in a given screen are included in the calculation.

Input Data Features. The CE prediction model currently incor-
porates 67 features of the input data (34 phenotype features, 20
linkage analysis features, 9 mutation features, 2 gene features,
and 2 other features) (Table 3). The 20 most important features
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Fig. 1. CE overview and performance. (A) Schematic of input features and outputs from CE. (B) Polynomial regression analysis of CE score and average
percentage of verified mutation–phenotype associations. Each data point represents a group of mutation–phenotype associations. The percentage of verified
associations (y axis) is plotted versus CE Score range (x axis) in bins of 0.01 (e.g., 0.35 to 0.36, 0.37 to 0.38, and so forth). n = 4,916 mutation–phenotype
associations and 514 CRISPR/Cas9-targeted genes. (C and D) ROC curves for CE Score (C) and algorithmic score (D).

Table 1. CE performance for flow cytometry phenotypes

Cutoff True positives False positives True negatives False negatives Recall, % Accuracy, % Precision, %

Mutation–phenotype associations (n = 96,022; 1,310 verified, 1,757 excluded, 92,955 untested)
Excellent 838 176 1,581 472 63.97 78.87 82.64
Good and above 1,140 286 1,471 170 87.02 85.13 79.94
Potential and above 1,209 669 1,088 101 92.29 74.89 64.38
Not good and above 1,310 1,757 0 0 100 42.71 42.71

Alleles (n = 3,020 named alleles; 275 verified, 112 excluded, 2,633 untested)
Excellent 215 14 98 60 78.18 80.88 93.89
Good and above 246 21 91 29 89.45 87.08 92.13
Potential and above 257 59 53 18 93.45 80.10 81.33
Not good and above 275 112 0 0 100 71.06 71.06

Genes (n = 15,313; 146 causative, 108 noncausative, 15,059 untested)
Excellent 114 19 89 32 78.08 79.92 85.71
Good and above 132 24 84 14 90.41 85.04 84.62
Potential and above 139 69 39 7 95.21 70.08 66.83
Not good and above 146 108 0 0 100 57.48 57.48
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are ranked in Table 4. The damage score and essentiality score
(E-score) result from independent machine-learning programs.
The rule-based algorithmic score results from computational
execution of a fixed algorithm that was human designed.
Damage score. The damage score (range 0 to 1), a mutation fea-
ture, is the fifth most important feature overall in the CE algo-
rithm, and has important biological relevance. The damage score
denotes the likelihood that a protein is functionally impaired and
is determined by a machine-learning algorithm that integrates
37 independent prediction scores from the human database for
Nonsynonymous Functional Prediction (dbNSFP) and the prob-
ability of protein damage to phenovariance caused by mouse
mutations (3). A higher score suggests a mutation is more likely to
be deleterious, and therefore more likely to be causative (although
not always the case). The current damage score prediction model
was trained on 871 known deleterious mutations and 1,797 known
neutral mutations; 666 mutations with known effects were used to
test the performance of the established model, which yielded an
ROC curve with AUC of 0.852 (SI Appendix, Fig. S3).
Essentiality score. The E-score (range 0 to 1) is a gene feature and
denotes the likelihood of lethality prior to weaning age (4 wk
postpartum) in mice homozygous for a robust knockout allele of
a gene. The E-score is calculated using a machine-learning al-
gorithm incorporating various independent features of genes,
including gene conservation, protein–protein interaction network,
expression stage, and viability/proliferative ability of human cell
lines in which the gene is mutated. The E-score prediction model
is trained at monthly intervals. The current training dataset con-
sists of 3,538 known nonessential genes (E-score = 0) and 2,070
known essential genes (E-score = 1), determined based on an-
notations in the Mouse Genome Informatics (MGI) database and
observed effects of CRISPR-targeted null mutations we generated
in C57BL/6J mice. The current cutoff values are >0.5 for essential
genes and <0.5 for nonessential genes, and are used to inform
gene-targeting efforts, in which either a knockout allele or a re-
placement identical to the original ENU allele is created for
verification of phenotype; 1,401 genes with known effects on via-
bility were used to test the performance of the established model,
yielding an ROC curve with AUC of 0.894 (SI Appendix, Fig. S4).
Algorithmic score. Assessments of mutation–phenotype associa-
tions are made using a human-developed algorithm that outputs
a points-based score called the algorithmic score (current range
−13.5 to 3.5). The algorithmic score appears twice among the
most important features contributing to the CE algorithm (first
and third in importance) (Table 4), and provides an overall as-
sessment based on our (human researcher) experience of how
likely the mutation is to be causative. The algorithm consists of a
set of rules based on empirical observations (Table 5). For each
feature supporting or opposing the authenticity of a mutation–
phenotype association, respectively, the algorithmic score is in-
creased or decreased. The features used in the algorithmic score
calculation are similar to those used in the CE machine-learning
algorithm, but static (not influenced by exposure to new training
data), and the performance of the rule-based algorithm by itself

falls short of the performance of the CE prediction model
(Fig. 1D).
Driven By status. Another input feature to the CE algorithm is
generated by a software program called Driven By, which eval-
uates both linked and unlinked candidate mutations to deter-
mine the best candidate. At times a cluster of linked mutations
fails to undergo meiotic separation; hence, more than one mu-
tation may stand as a candidate for causation of a phenotype. On
other occasions, as a matter of happenstance, homozygotes for a
noncausative, unlinked mutation may also be homozygous for
a causative mutation. Usually this occurs when the number of
homozygotes for the noncausative mutation is small. The Driven
By program omits all instances of shared zygosity for both mu-
tations and recomputes P values testing departure from the null
hypothesis in recessive, additive, and dominant models of trans-
mission, and determines which mutation is the more robust cau-
sation candidate. This mutation is assigned “driver” status. Based
on driver status together with other factors (e.g., which mutation is
the most damaging, which mutation is the most essential for sur-
vival to weaning age, and which mutation has evidence of other
alleles with a similar phenotype), CE may be able to identify the
causative mutation out of a set of colocalizing mutations, giving it
a markedly superior CE score.
Finally, an allelic series probed with a phenotypic screen pro-

vides an extremely important clue to causation and is considered
in CE assessments (Tables 3 and 4, multiple rows). If multiple
alleles of the same gene are associated with the same phenotype, it
is a strong indication that a mutation in this gene caused the ob-
served phenotype. Superpedigrees—composites of multiple pedi-
grees assayed in the same screen—are of three types. Gene
superpedigrees pool different and identical alleles of a given gene,
subjected to the same screen. Position superpedigrees pool iden-
tical alleles only. Identical alleles may result from: 1) chance
mutation of the same nucleotide, 2) transmission of a single mu-
tation to multiple G1 descendants of a single G0 mouse, and 3) a
background mutation present in mutagenized stock and shared by
multiple G0 mice. Selective gene superpedigrees incorporate only
alleles associated with P values < 0.05 with a common direction of
effect in a given phenotypic screen, and thus give an intentionally
biased view of mutation effects. Because many (but not all) ENU-
induced mutations are functionally hypomorphic, a selective gene
superpedigree for a set of mutations in a particular gene can
strongly implicate that gene in the phenotype probed by the screen
in question. The number of pedigrees (and alleles) tested is also
important; for very large genes, hundreds of alleles may have been
tested, and the finding that two or three alleles score in a partic-
ular screen may be due to chance alone. CE takes account of this
in computing probability of causation (e.g., Table 4, #8 and #9).

CE Assessments of 87,795 Mutation–Phenotype Associations Identified
by AMM in Flow Cytometry Screens. The flow cytometry screens
survey 42 parameters of peripheral blood cells, measuring the
frequencies of various immune cell populations and expression
levels of several cell surface markers (Table 6). Of 7,109,669
mutation–phenotype associations tested by AMM in the flow
cytometry screens, 87,795 passed the default initial filters, per-
mitting analysis by CE. These putative mutation–phenotype as-
sociations emanated from 39,685 mutations in 14,809 genes,
resident in 142,653 G3 mice from 3,987 pedigrees. Restriction to
good or excellent candidates reduced the number of mutation–
phenotype associations to 7,676, emanating from 2,336 mutations
in 1,279 genes, resident in 1,634 pedigrees (Dataset S1; see also
CE online for the most updated dataset). Gene–phenotype asso-
ciations for the 1,279 genes (those with at least one good/excellent
mutation–phenotype association) are displayed in a heatmap in
Dataset S2.
We could make several observations concerning gene–phenotype

associations (Dataset S2). First, mutations in the majority (872

Table 2. CE performance in scoring colocalizing mutations

No. of colocalized genes Total cases CE ranked correctly % Correct

2 591 514 87.0
3 233 208 89.3
4 91 76 83.5
5 32 22 68.8
6 6 5 83.3
7 6 6 100
8 1 0 0
10 1 1 100
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Table 3. Features of input data in CE prediction algorithm

Input data Features

Phenotype data The percentage of VAR mice whose screen results overlap with those of B6 mice
The percentage of VAR mice whose screen results overlap with those of REF mice
Difference between HET and VAR results
Direction of the results (whether the average of VAR screening results is greater or less than the average of REF

screening results)
Difference between REF and VAR results
Number of female HET mice
Number of female REF mice
Number of male REF mice
Number of male HET mice
Number of male VAR mice
Number of female VAR mice
The identity of the phenotype (e.g., FACS T cell)
The group identity of the phenotype (e.g., FACS screen or bone screens)
The number of outliers in REF mice
The number of outliers in HET mice
The number of outliers in VAR mice
Difference between REF and B6 results
Difference between REF and HET results
Whether the variance of REF is big
Whether the variance of HET is big
Whether the variance of VAR is big
Whether the average age of the mice for this mutation/phenotype is older than the average age of all mice tested for

this phenotype
Whether the average age of the VAR mice is younger than the average age of the REF mice
Number of pedigrees this gene/phenotype has
The direction of the position superpedigree results for this mutation/phenotype
Number of significant* single pedigrees in the significant position superpedigree for this mutation/phenotype
Number of pedigrees included in the significant position superpedigree results for this mutation/phenotype
The direction of the gene superpedigree results (null alleles) for this phenotype
The direction of the gene superpedigree results (null+missense alleles) for this phenotype
Whether there are corresponding trimmed results for the untrimmed data (only when VAR results are greater than REF

results)†

How closely VAR results resemble B6 results
How closely HET results resemble B6 results
How closely REF results resemble B6 results
Whether REF and B6 results are different

Linkage data Average number of Linkage Analyzer runs with P < 0.00005 for each allele of this gene
Number of phenotypes with significant selective gene superpedigree results for this gene
Number of Linkage Analyzer runs with P < 0.00005 for this gene
Number of pedigrees in the selective gene superpedigree and whether the result is significant for this gene/

phenotype
Number of pedigrees contributing to a significant gene superpedigree result (null alleles)
Number of pedigrees in a significant gene superpedigree result (null alleles)
The minimum P value of single Linkage Analyzer result for this mutation/phenotype
The percentage of body weight screens with P < 0.0001 for this mutation
The percentage of FACS screens with P < 0.0001 for this mutation
Whether the gene superpedigree results are significant (null+missense) for this phenotype
Whether P value is significant in both raw and normalized assays for this mutation/phenotype
Whether the minimum P value is for a recessive model of inheritance (rather than dominant or additive)
Whether this phenotype is driven by another mutation
The percentage of DSS screens with P < 0.0001 for this mutation
Number of FACS phenotypes with P < 0.0001 for this mutation
Number of DSS phenotypes with P < 0.0001 for this mutation
Number of body weight phenotypes with P < 0.0001 for this mutation
Whether the position superpedigree results are significant for this mutation/phenotype
Whether the gene superpedigree results are significant (null alleles) for this phenotype
Whether the gene superpedigree results are significant (missense alleles) for this phenotype

Mutation data Damage score for this mutation
Number of alleles this gene has
Whether the mutation is autosomal
Whether the mutation is colocalized with another mutation for this phenotype
Whether the mutation is colocalized with a verified mutation for this phenotype
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genes, 68.2%) of the 1,279 genes resulted in three or fewer good/
excellent phenotype associations, with 533 genes (41.7%) having a
single good/excellent phenotype association (Fig. 2A). In contrast,
only 30 genes (2.3%) had at least 20 good/excellent phenotype
associations, and among them 26 are well-known immune regu-
latory genes. Second, we found that the number of good/excellent
gene associations varied widely depending on the cell-type af-
fected, with B cell and T cell phenotypes associated with the most
genes and conventional and plasmacytoid DC phenotypes associ-
ated with very few genes (Fig. 2B). Finally, 449 genes (35.1%)
known or predicted to be essential for viability (E-score > 0.55 in
this case) were associated with at least one flow cytometry phe-
notype, indicating that numerous developmentally important
genes likely also have postnatal functions in leukocytes (Fig. 2C).
A total of 1,354 mutations in 667 genes rated good/excellent by

CE and suspected or proven causative of flow cytometry phe-
notypes were given allele names and annotated as phenotypic
mutations in the Mutagenetix database, irrespective of present
candidate status (Dataset S3). While we consider that named
alleles are very likely causative, we cannot be certain that un-
named alleles are not also causative; indeed, 27% of named al-
leles had AVP ≤ 0.5. Some of the unnamed alleles are designated
as “linked to” or “driven by” another mutation in the same pedi-
gree. This may indicate that they are not causative, but does not
always guarantee it, and in some cases two named alleles are linked,
suggesting that we have declared both mutations to be causative
(even though they may cosegregate). Definitive evidence for such
dual causation can only be adduced by CRISPR/Cas9 targeting.
We searched for highly represented gene ontology (GO) an-

notations associated with the 667 genes with named alleles
(Datasets S4 and S5). As expected, the biological process an-
notations were most highly enriched for terms related to immune
system processes (211 genes, P = 9.82e-42), lymphocyte activa-
tion (113 genes, P = 5.21e-39), immune system development
(117 genes, P = 9.73e-36), and other immune development/reg-
ulatory processes, which was consistent with our manual evalu-
ation identifying 281 (42.1%) of the 667 genes as previously
known immune regulators (Datasets S4 and S5). By manual
evaluation, 386 genes represented “new” immunologically im-
portant genes, each necessary for a normal flow cytometry pro-
file. For many of these genes, mutant alleles were not previously
available in mice and no primary immunological or other phe-
notypic data were available. This may be due in part to known or
predicted lethality caused by null alleles of 146 of these 386
genes (E-score > 0.5). Enriched GO terms associated with the
386 new immunologically important genes were dominated by
metabolic process terms, including cellular metabolic process
(232 genes, P = 3.73e-12), organic substance metabolic process
(240 genes, P = 8.50e-12), cellular macromolecule metabolic
process (178 genes, P = 3.59e-7), and protein metabolic process
(127 genes, P = 0.000264) (Dataset S6). We also assigned the 386

genes to a defined set of broad GO annotations for biological
processes without regard for enrichment (Dataset S7). Based on
its granular GO annotations, each gene was assigned to any of 70
parent GO terms to which it was related. Notably, 31 of the 386
genes were associated with the term “immune system process,”
based upon genetic interactions, an immune system association of
an ancestral gene, sequence orthology to another gene associated
with immune system process, or association of the orthologous
human gene with an immune system process. In addition, 300 of
the 386 genes were detected by RNA-sequencing with medium
(11 to 1,000 transcripts per million) or high (>1,000 transcripts
per million) expression in the spleen and/or thymus (4).
At present, a total of 603 genes implicated in flow cytometry

phenotypes show a GVP > 0.5, 332 genes show a GVP > 0.8, and
222 genes show a GVP > 0.95. The genes with GVP > 0.95, from
which flow cytometry phenotypes are nearly certain to emanate,
are listed in Dataset S8; 121 (55%) of these genes are known to
affect flow cytometry measurements and 101 (45%) are novel.

Discussion
CE allows rapid examination of mutations and genes strongly
predicted to affect (or not to affect) phenotypes of interest mea-
sured in forward genetic screening. In general, CE is superior to
the human researcher in evaluating mutation–phenotype associa-
tions because of its ability to integrate parameters not intuitively
favorable or detrimental with respect to linkage analysis, and be-
cause it can perform this evaluation more rapidly on a large scale.
Using the numerical CE score and categorical assessment given by
CE, it is simple to rank mutations into priority lists for further in-
depth study. In addition, causative mutations can frequently be
discerned among several colocalizing mutations. As millions of
coding/splicing mutations are introduced into the mouse genome
pedigree by pedigree, more extensive allelic series will result, and
nearly all genes in which causative loss-of-function mutations can
exist will be identified with high confidence. CE is a tool necessary
to deconvolute causation and permit this to occur.
Beyond its use as a tool for rapid identification of the muta-

tions responsible for ENU-induced phenotypes, CE should be
exceptionally useful to mouse geneticists studying complex traits
(e.g., the Collaborative Cross). Meiotic mapping may confine
phenotypes to a relatively large genomic interval, within which
many candidate genes with mutational differences exist. If the
phenotype is immunologic, knowledge of all genes from which
flow cytometric phenotypes emanate is an important starting
point for studies of causation, wherein these genes can be
targeted.
CE will also have value to clinical geneticists seeking to identify

causes of human disease. For patients with immunopathology and
flow cytometric anomalies—but no mutation in a “classic” caus-
ative gene—other gene variants may be evaluated using CE.
Mouse gene symbols corresponding to all loci mutated in the

Table 3. Cont.

Input data Features

Whether the mutation is colocalized with an excluded mutation for this phenotype
Whether the mutation is colocalized with a mutation of higher damage score
The number of splice variants for the gene containing this mutation
The ratio of number of named mutations vs. number of incidental mutations for this amino acid change

Gene data The P value for a lethal phenotype
The probability that the gene is an essential gene (E-score)

Other Number of phenotypes with algorithmic score greater or equal to −0.5 for this mutation
Algorithmic score for this mutation/phenotype

The top 20 most important features are in boldface. B6, C57BL/6J.
*Significant pedigree refers to linkage analysis of a pedigree or superpedigree by AMM in which P < 0.05 for a mutation-phenotype association.
†Trimmed results = raw data normalized for cell viability.
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patient (identified by whole-genome or whole-exome sequencing)
can be entered into CE and searched as a batch. Those found to
cause a flow cytometric abnormality in the mouse evocative of that
in the patient may be considered prime candidates. If genetic
mapping has been performed in a human family and a particular
chromosomal region has been identified, the identification of a
candidate gene can be made with even higher confidence using
CE, which also accepts human chromosome coordinates as search
input. By using CE in conjunction with analyses of large human
genome/phenotype datasets (e.g., UK Biobank), CE may also fa-
cilitate and accelerate identification of causal variants within
disease-associated loci found by genome-wide association studies
(GWAS). CE could be queried for relevant mutation–phenotype
associations for each candidate gene within a locus identified by
GWAS; a mouse gene variant associated with a phenotype similar
to the human phenotype under study would suggest causality.
Moreover, a mutant mouse can, in most cases, be ordered im-
mediately from the Mutant Mouse Resource and Research Cen-
ters, providing a model of the human disease for laboratory study.
Because the majority of mutations cause loss-of-function (rather
than gain-of-function or new functions), and the majority of mouse
genes have human orthologs or homologs, many such cases might
quickly be solved. Thus, CE is a powerful resource that addresses
the question of “missing heritability” associated with immune ab-
normalities, and as noted for the 386 new genes (Dataset S6),

genes that regulate or mediate cellular metabolic processes may be
prime candidates for consideration.
In this paper, we evaluated mutation–phenotype associations

representative of 14,809 genes with one or more variant alleles
and 42 flow cytometric parameters of peripheral blood leuko-
cytes. Flow cytometric analyses allow detection and measurement
of immune cell populations with specific functional correlates, and
provide insight into the developmental stages cells traverse. Ab-
normal flow cytometry patterns are often associated with immune
dysfunction, and many immunodeficiency and autoimmune phe-
notypes were initially detected not by functional screens per se,
but by analyzing the peripheral blood with flow cytometry. Human
disease states, exhibiting similar or identical flow cytometry phe-
notypes, attest to the clinical relevance of many mouse flow
cytometry abnormalities (5–12). We have to date achieved ∼55%
genome saturation in screening 42 flow cytometry parameters,
from which we identified 1,004 genes with good/excellent pheno-
type associations not previously associated with immune function
(from GO analysis of the 1,279 genes, which found that 275 were
associated with “immune system process”). Thus, even with a
false-discovery rate up to 20%, we expect that about 456 more new
immunologically important genes remain to be found.
In broadly surveying all 1,279 genes with at least one good/

excellent phenotype association, we observed that a far greater
percentage of genes had one, two, or three good/excellent phe-
notype associations (68.2%) compared to the percentage with
many (≥20) good/excellent phenotype associations (2.3%). These
findings suggest that the majority of genes affecting immune cell
populations in the blood carry out cell type- or phenotype-specific
functions. We are investigating the hypothesis that identical or
similar combinations of phenotypes affected by two or more genes
can indicate the functioning of those genes in a common molec-
ular pathway. We also observed that good/excellent gene associ-
ations did not affect cell populations with equal frequency despite
uniform phenotypic testing across all screens. For example, T cells
had 4.8-fold more gene associations than conventional DC, 12.5-
fold more than plasmacytoid DC, and 4.4-fold more than neu-
trophils. While a trivial explanation is that significant phenotypic
differences are detected less often for rarer blood cell populations,
another possibility reflecting the biology of the cells is that T cells
are intrinsically less tolerant of genetic variation than conventional
DC, plasmacytoid DC, or neutrophils, at least with respect to the
numbers of these cells represented in the peripheral blood. An
understanding of individual protein function and the pathways
they regulate is critical to gain insight into these issues.
The vast majority of mice phenotyped by flow cytometry were

also phenotyped in other screens, among them screens measur-
ing responses to immunization, innate immune responses, body
weight, blood pressure, heart rate, dextran sodium sulfate (DSS)
sensitivity, circadian rhythms, and motor coordination. Data
from screens for skeletal phenotypes detected by DEXA scan-
ning are currently publicly accessible. In the future, the data
from other screens will be released for public users of CE to
interpret a wide range of phenotypic consequences that emanate
from each mutation. All biomedically relevant phenotypic screens
may ultimately enlighten the study of human phenotype and help
to distinguish mechanisms of phenotypes caused by certain alleles,
as many mutations score in disparate screens (for example, immune
function and body weight, or immune function and neurobehavioral
function).

Materials and Methods
Mice. Eight- to 10-wk-old C57BL/6J males purchased from The Jackson Labo-
ratory were mutagenized with ENU, as described previously (13). Mutagenized
G0 males were bred to C57BL/6J females, and the resulting G1 males were
crossed to C57BL/6J females to produce G2 mice. G2 females were back-
crossed to their G1 sires to yield G3 mice, which were screened for phenotypes.

Table 4. Top 20 most important features of input data in CE
prediction algorithm

Rank Feature

1 Number of phenotypes with algorithmic score greater or equal
to −0.5 for this mutation

2 Average number of Linkage Analyzer runs with P < 0.00005 for
each allele of this gene

3 Algorithmic score for this mutation/phenotype
4 Number of Linkage Analyzer runs with P < 0.00005 for this gene
5 Damage score for this mutation
6 Number of pedigrees in the selective gene superpedigree and

whether the result is significant* for this gene/phenotype
7 Number of phenotypes with significant selective gene

superpedigree results for this gene
8 Number of pedigrees contributing to a significant gene

superpedigree result (null alleles)
9 Number of pedigrees in a significant gene superpedigree

run (null alleles)
10 The percentage of FACS screens with P < 0.0001 for this mutation
11 The minimum P value of single Linkage Analyzer result for this

mutation/phenotype
12 The percentage of VAR mice whose screen results overlap

with those of B6 mice
13 Whether the gene superpedigree results are significant

(null+missense alleles)
14 Whether the gene superpedigree results are significant

(null alleles)
15 The percentage of VAR mice whose screen results overlap

with those of REF mice
16 Difference between HET and VAR results
17 Number of female REF mice
18 The percentage of body weight screens with P < 0.0001 for this

mutation
19 Number of female HET mice
20 Difference between REF and VAR results

Ranked from most (1) to least (20) important.
*Significant pedigree refers to linkage analysis of a pedigree or super-
pedigree by AMM in which P < 0.05 for a mutation-phenotype association.
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Whole-exome sequencing and mapping were performed as described
previously (1).

To generate mice carrying CRISPR/Cas9-targetedmutations, female C57BL/
6J mice were superovulated by injection with 6.5 U pregnant mare serum
gonadotropin (PMSG; Millipore), then 6.5 U human chorionic gonadotropin
(hCG; Sigma-Aldrich) 48 h later. The superovulated mice were subsequently
mated with C57BL/6J male mice overnight. The following day, fertilized
eggs were collected from the oviducts and in vitro transcribed Cas9 mRNA
(50 ng/μL) and small base-pairing guide RNA (50 ng/μL) were injected into
the cytoplasm or pronucleus of the embryos. The injected embryos were
cultured in M16 medium (Sigma-Aldrich) at 37 °C and 5% CO2. For the
production of mutant mice, two-cell stage embryos were transferred into

the ampulla of the oviduct (10 to 20 embryos per oviduct) of pseudopreg-
nant Hsd:ICR (CD-1) (Harlan Laboratories) females.

Mice were housed in specific pathogen-free conditions at the University of
Texas Southwestern Medical Center and all experimental procedures were
performed in accordance with the guidelines established by the Institutional
Animal Care and Use Committee of the University of Texas Southwestern
Medical Center and with the NIH Guide for the Care and Use of Laboratory
Animals (14). Male and female mice were used in all experiments and data
for males and females were combined for analysis.

Flow Cytometry. Peripheral blood was collected from G3 mice >6 wk old by
cheek bleeding. Red blood cells (RBCs) were lysed with hypotonic buffer

Table 5. Rules for algorithmic score determination

Feature Points

REF outliers* −1
HET outliers* −1
VAR outliers* −1
HET results have big variance† −1
VAR results have big variance† −1
REF and B6 results are different‡ −1
REF and VAR results overlap§ −1 to −3
B6 and VAR results overlap§ −0.5
HET results more similar than REF results to B6 results{ −1 to −2
VAR results more similar than REF results to B6 results# −1 to −2
Magnitude of change less than 2-fold for FACS B-1 B cell phenotype −0.5
Magnitude of change less than 1.5-fold for FACS B-1 B cell phenotype −3
Magnitude of change less than 2-fold for FACS B-2 B cell phenotype −0.5
Magnitude of change less than 1.5-fold for FACS B-2 B cell phenotype −3
Magnitude of change less than 2-fold for FACS DC phenotype −0.5
Insignificant position superpedigree result −1
Significantk position superpedigree result (only minority of pedigrees contributed) −1
In opposite direction of significant position superpedigree result −3
Significant position superpedigree result 1.5
In opposite direction of significant gene superpedigree result (null alleles) −3
Insignificant gene superpedigree result (null allele) −1
Significant gene superpedigree result (null alleles) 1
In opposite direction of significant gene superpedigree result (null+missense alleles) −0.5
Insignificant gene superpedigree result (null+missense alleles) −0.5
Significant gene superpedigree result (null+missense alleles) 0.5
In opposite direction of significant gene superpedigree result (missense alleles) −0.5
Insignificant gene superpedigree result (missense alleles) −0.5
Significant gene superpedigree result (missense alleles) 0.5
Significant selective gene superpedigree result with more than two pedigrees 3
Significant selective gene superpedigree result with two pedigrees 2
In opposite direction of insignificant selective gene superpedigree result 1
In opposite direction of significant selective gene superpedigree result with two pedigrees −2
In opposite direction of significant selective gene superpedigree result with more than two pedigrees −3
Insignificant selective gene superpedigree result −1
Significant selective gene superpedigree result exists for other phenotypes 0.5
Mutation is linked to a more damaging mutation −1
Mutation is linked to an excluded mutation 1
Mutation is linked to a verified mutation −3
No corresponding trimmed result −3
Phenotype is driven by another mutation −1

B6, C57BL/6J.
*A screen result is considered as an outlier if its value is outside the range of mean ± 3 × standard deviation (SD).
†The variance of REF, HET, or VAR results is considered big if the SD is more than 30% of the absolute difference
between the maximum screening result and the minimum screening result.
‡REF and B6 results are considered different if the absolute difference between the REF mean and B6 mean is more than
2 × REF SD and 2 × B6 SD.
§REF or B6 results overlap with VAR results if they are within the range of VAR mean ± 1 × VAR SD.
{HET results are considered more similar than REF results to B6 results if the absolute difference between the B6 mean
and REF mean is more than half of REF SD and more than the absolute difference between HET mean and B6 mean.
#VAR results are considered more similar than REF results to B6 results if the absolute difference between the B6 mean
and REF mean is more than half of REF SD and more than the absolute difference between VAR mean and B6 mean.
kSignificant pedigree refers to linkage analysis of a pedigree or superpedigree by AMM in which P < 0.05 for a mutation-
phenotype association.
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(eBioscience). Samples were washed with FACS staining buffer (PBS with 1%
[wt/vol] BSA) one time and then centrifuged at 500 × g for 5 min. The RBC-
depleted samples were stained for 1 h at 4 °C, in 100 μL of a 1:200 mixture of
fluorescence-conjugated antibodies to 15 cell surface markers encompassing
the major immune lineages B220 (BD, clone RA3-6B2), CD19 (BD, clone 1D3),
IgM (BD, clone R6-60.2), IgD (BioLegend, clone 11-26c.2a), CD3e (BD, clone
145-2C11), CD4 (BD, clone RM4-5), CD8α (BioLegend, clone 53-6.7), CD11b
(BioLegend, clone M1/70), CD11c (BD, clone HL3), F4/80 (Tonbo, clone
BM8.1), CD44 (BD, clone 1M7), CD62L (Tonbo, clone MEL-14), CD5 (BD, clone
53-7.3), CD43 (BD, clone S7), NK 1.1 (BioLegend, clone OK136), and 1:200 Fc
block (Tonbo, clone 2.4G2). Flow cytometry data were collected on a BD LSR
Fortessa and the proportions of immune cell populations in each G3 mouse
were analyzed with FlowJo software. The resulting phenotypic data were
uploaded to Mutagenetix for automated mapping of causative alleles.

AutomatedMeiotic Mapping.AMMwas performed as previously described (1).
Briefly, genotypes at all mutation sites present in the exomes of G3 mice
were determined prior to phenotypic screening: tail DNA from G1 males was
subjected to whole-exome sequencing using an Illumina HiSEq. 2500 in-
strument; G2 and G3 mice were then genotyped at the identified mutation

sites using an Ion PGM (Life Technologies). Following phenotypic screening,
linkage analysis using recessive, additive, and dominant models of inheri-
tance was performed for every mutation in the pedigree using the program
Linkage Analyzer; phenotypic data scatter plots and Manhattan plots were
displayed using the program Linkage Explorer. The P values of association
between genotype and phenotype were calculated using a likelihood ratio
test from a generalized linear model or generalized linear mixed-effect
model and Bonferroni correction applied.

Candidate Explorer. The CE prediction model was built using a random forest
algorithm implemented in the R caret package. CE is publicly accessible at
https://mutagenetix.utsouthwestern.edu/linksplorer/candidate.cfm. Linkage
data obtained through screening will be released in phases according to
phenotype. Blood cell flow cytometry screening data are currently available
for search using CE and new data will be released as they are acquired after
a 6-mo delay from the date of screening.

Damage Score. The damage score is an ensemble score that uses a logistic
regression model to integrate 38 independent prediction scores. Thirty-seven
prediction scores are retrieved from the human dbNSFP, and consist of scores
from the following algorithms: SIFT, SIFT4G, Polyphen2-HDIV, Polyphen2-
HVAR, LRT, MutationTaster2, MutationAssessor, FATHMM, MetaSVM, MetaLR,
CADD, CADD_hg19, VEST4, PROVEAN, FATHMM-MKL coding, FATHMM-XF
coding, fitCons (four scores), LINSIGHT, DANN, GenoCanyon, Eigen, Eigen-PC,
M-CAP, REVEL, MutPred, MVP, MPC, PrimateAI, GEOGEN2, BayesDel_addAF,
BayesDel_noAF, ClinPred, LIST-S2, and ALoFT. Our dataset uses the ranked
scores of each algorithm transformed by dbNSFP. The 38th prediction score is
the probability of protein damage to phenovariance caused by mouse muta-
tions, calculated as previously described (3). Among the 38 prediction scores, the
most important is the score from MutPred (mutpred.mutdb.org/), followed by
the probability of protein damage to phenovariance caused by mouse muta-
tions, and phastCons100way_vertebrate (a conservation score). Damage Score
can be used as a quantitative prediction score to measure the likelihood of a
mouse mutation being deleterious.

Our assumption is that if the mouse missense mutation is the same as the
human mutation (both nucleotide and amino acid changes), then the mu-
tation effect in human andmouse should be similar. We therefore use human
scores to predict likelihood of damage in mice.

A set of mouse ENU mutations with class tags (known damaging or
neutral) was retrieved from the Mutagenetix database. The known mutation
class tags come from four sources: 1) Physically isolated mutations (of linkage
with all other coding/splicing mutations in the pedigree) that fall within
essential genes yet can be transmitted from heterozygous G2 females and
their heterozygous G1 sire to homozygous G3 mice at a ratio that does not
significantly depart from Mendelian expectation, are considered neutral. 2)
Conversely, isolated mutations in essential genes that are not transmitted to
homozygosity, to the extent that homozygotes are observed at frequencies
significantly beneath the expected Mendelian ratio, are considered dam-
aging. 3) Mutations that cause qualitative (usually visible) phenotypes are
considered damaging. 4) Mutations that have been verified to be significant
in phenotypic screening of CRISPR replacement alleles are also considered to
be damaging.

The mutations tagged as damaging or neutral were lifted-over from
mouse genome to human genome (translated to the equivalent amino acid)
and kept for mutations that lead to the same nucleotide and amino acid
changes in both genomes. About 4% of mouse mutations could not be
mapped to the corresponding human mutations using the lift-over tool from
the University of California, Santa Cruz (UCSC) (https://genome.ucsc.edu/cgi-
bin/hgLiftOver). They were not included in the final dataset for model
training and testing. A point-biserial correlation was used to estimate the
relationship between the mouse mutations tagged damaging or neutral
with the most important human mutation prediction score (MutPred score).
The correlation coefficient was 0.525, with 95% CI: 0.50 to 0.55. Then we
searched for corresponding human mutations in the dbNSFP database to
obtain scores for all available prediction methods. The retrieved scores,
combined with the probability of phenotypically detectable damage by the
mutations in mice, were integrated with the input dataset and used to train
and optimize a logistic regression model using the train function of the R
caret package with 10-fold cross-validation (https://topepo.github.io/caret/
model-training-and-tuning.html); this was repeated three times. The scaling
of the data were performed by the preProcess function. The constructed
model (classifier) was then used to compute the score of a set of mutations
with unknown class membership. The dataset used for prediction was cre-
ated in the same way as dataset used for modeling. The score predicted by

Table 6. Flow cytometry screening parameters

Parameter

1 B cells
2 B:T cell ratio
3 B-1 B cells
4 B-1a B cells
5 B-1a B cells in B-1 B cells
6 B-1b B cells
7 B-1b B cells in B-1 B cells
8 B-2 B cells
9 B220 MFI
10 CD11b+ DC (gated in CD11c+ cells)
11 CD11c+ DC
12 CD4:CD8 T cell ratio
13 CD4+ T cells
14 CD4+ T cells in CD3+ T cells
15 CD44 MFI on CD4+ T cells
16 CD44+ CD4+ T cells
17 CD44 MFI on CD8+ T cells
18 CD44+ CD8+ T cells
19 CD44+ T cells
20 CD44 MFI on T cells
21 CD8+ T cells
22 CD8+ T cells in CD3+ T cells
23 CD8α+ DC (gated in CD11c+ cells)
24 Central memory CD4+ T cells in CD4+ T cells
25 Central memory CD8+ T cells in CD8+ T cells
26 Effector memory CD4+ T cells in CD4+ T cells
27 Effector memory CD8+ T cells in CD8+ T cells
28 Effector T cells
29 IgD MFI
30 IgD+ B cells
31 IgM MFI
32 IgM+ B cells
33 Macrophages
34 Memory T cells
35 Naïve CD4+ T cells in CD4+ T cells
36 Naïve CD8+ T cells in CD8+ T cells
37 Naïve T cells
38 Neutrophils
39 NK cells
40 NK1.1+ T cells
41 Plasmacytoid DC
42 T cells

Parameters represent frequencies unless otherwise indicated. MFI, mean
fluorescence intensity.
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the model represents the probability of a mutation being in the damaging
class. The higher the score, the more likely to be deleterious the mutation.

The input dataset contains 3,334 mouse mutations, of which 1,088 are
deleterious and 2,246 are neutral. In order to evaluate the performance of
the constructed model in predicting the membership of the new mutation
category, the input dataset was randomly divided into two sets: one set
consisting of 2,668 mutations (80% of original dataset, 871 deleterious
mutations and 1,797 neutral mutations) was used to train and validate the
logistic regression model, and a second set of the remaining 666 mutations
was used to test the performance of the established model. The 80/20 splits
for training and testing were conducted 10 times randomly; the ROC curve
shown in SI Appendix, Fig. S3 yielded an AUC close to the average AUC value
of 0.853 ± 0.014.

Quartile based correspondence between raw damage scores and proba-
bility of protein damage to phenovariance is shown in SI Appendix, Table S1.

E-Score. E-score is used to estimate the likelihood of lethality in mice when
the gene is knocked out. Our approach is based on the assumption that
essential and nonessential genes in mice can be distinguished by various
independent features of genes. The logistic regression method is used to fit
the features of known essential and nonessential genes in mice to obtain a
trained model for predicting the unknown essentiality of genes.

The model uses the following gene features: 1) From the OGEE database
(15): gene conservation, connectivity in protein–protein interaction network,
expression stage during development, evolutionary age, GO terms, copy number
of genes, and length of gene product. These features have been suggested to be
associated with gene essentiality of many species, including mouse. 2) The essen-
tiality of human orthologous genes: the genes required for cell proliferation and
viability in tested cell lines are defined as essential genes under specific conditions.
Frequency of being essential in tested human cell lines was used as a feature
in our model. 3) pLI score from the ExAC (probability of loss-of-function

intolerance): the closer the score is to 1, the more likely the gene is essential
to human survival. 4) Minimum P values for an ENU-targeted mouse gene
obtained from the lethal model by the Linkage Analyzer program.

The phenotypic description of the 8,032 genes in MGI, which may be
knocked out in mice, was carefully reviewed and a set of genes designated as
“essential” or “nonessential” were manually curated according to the fol-
lowing criterion: 1) If the homozygous knockout allele is explicitly described
as causing embryonic lethality, neonatal lethality, prenatal lethality, peri-
natal lethality, or preweaning lethality, the gene was considered to be re-
quired to survive before weaning and was classified as an essential gene. An
E-score of 1 was assigned to the gene. 2) If homozygous knockout alleles are
compatible with viability, normal growth, no obvious phenotype, or some
phenotype, but not apparent effect on viability, then it was classified as a
nonessential gene. An E-score of 0 was assigned to the gene. In addition, an
E-score of 1 was assigned to those genes verified in our CRISPR knockout
experiments as causing significant lethality before weaning; an E-score of
0 was assigned to genes verified in our CRISPR knockout experiments as
resulting in normal Mendelian ratios in crosses of heterozygous mutants.

A set of 7,009 genes, in which 2,587 were labeled as essential genes and
4,422 as nonessential genes, was integrated with the above-mentioned gene
features. The resulting dataset was used to train and optimize a logistic
regression model using the train function of the R caret package with 10-fold
cross-validation (https://topepo.github.io/caret/model-training-and-tuning.html); this
was repeated three times. The scaling of the data was performed by the
preProcess function. The constructed model was then used to predict the
essentiality of remaining mouse genes. The predicted score is between 0 and
1. The closer the score is to 1, the more likely the gene is essential.

To assess the performance of constructed model in predicting unknown
essentiality of genes, the dataset used to construct the model was randomly
divided into two sets: one set consisting of 5,608 genes (80% of original
dataset, 3,538 nonessential genes and 2,070 essential genes) was used to train
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Fig. 2. Characteristics of gene–phenotype associations for 1,279 genes with at least one good/excellent mutation–phenotype association. (A) Number of
good/excellent phenotype associations plotted versus gene count. (B) Number of good/excellent gene associations plotted versus flow cytometry parameter.
Parameters are cell frequencies unless indicated. MFI, mean fluorescence intensity. (C) Number and percentage of essential and nonessential genes.
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and validate the logistic regression model, and the remaining 1,401 genes
were used to test the performance of the established model in the training
dataset. The 80/20 splits for training and testing were conducted 10 times
randomly; the ROC curve shown in SI Appendix, Fig. S4 yielded an AUC close
to the average AUC value of 0.891 ± 0.0087.

Algorithmic Score. Each mutation–phenotype association starts with an al-
gorithmic score of zero that is adjusted according to the rules in Table 5.

GO Analysis. Summaries of GO annotations in Dataset S4 were generated
using the Alliance of Genome Resources SimpleMine tool (tazendra.caltech.
edu/∼azurebrd/cgi-bin/forms/agr_simplemine.cgi). Enriched GO annotations
associated with a gene list (Datasets S5 and S6) were determined using GO
TermFinder (16) (https://go.princeton.edu/cgi-bin/GOTermFinder) set to use
the Mus musculus annotations (MGI) and exclude evidence code “IEA”
(inferred from electronic annotation). GO TermMapper (16) was used to assign
genes to 70 static GO parent annotations (17) (https://go.princeton.edu/cgi-bin/
GOTermMapper) (Dataset S7).

Gene-Expression Data. The mouse Gene Expression Database (4) was queried
by batch submission of the 386 gene symbols. Tissue × Gene Matrix results,
all of which were from RNA-sequencing experiments, were filtered by “ana-
tomical system: immune system” and by “TPM level: High AND Medium.”

Data Availability. The CE data are part of the Mutagenetix database and
are publicly accessible at https://mutagenetix.utsouthwestern.edu/linksplorer/
candidate.cfm. Raw phenotype data are available through Candidate Explorer
by clicking the screen name for any mutation. Sequences of small base-pairing
guide RNA used for CRISPR/Cas9 targeting are available by request from the
corresponding author. All other data are available in the main text or the
supporting information.
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